Refine Your Search

Topic

Author

Search Results

Technical Paper

Particulate Filter Soot Load Measurements using Radio Frequency Sensors and Potential for Improved Filter Management

2016-04-05
2016-01-0943
Efficient aftertreatment management requires accurate sensing of both particulate filter soot and ash levels for optimized feedback control. Currently a combination of pressure drop measurements and predictive models are used to indirectly estimate the loading state of the filter. Accurate determination of filter soot loading levels is challenging under certain operating conditions, particularly following partial regeneration events and at low flow rate (idle) conditions. This work applied radio frequency (RF)-based sensors to provide a direct measure of the particulate filter soot levels in situ. Direct measurements of the filter loading state enable advanced feedback controls to optimize the combined engine and aftertreatment system for improved DPF management. This study instrumented several cordierite and aluminum titanate diesel particulate filters with RF sensors. The systems were tested on a range of light- and heavy-duty applications, which included on- and off-road engines.
Technical Paper

Review of Vehicle Engine Efficiency and Emissions

2017-03-28
2017-01-0907
This review paper summarizes major and representative developments in vehicle engine efficiency and emissions regulations and technologies from 2016. The paper starts with the key regulatory developments in the field, including newly proposed European RDE (real driving emissions) particle number regulations, and Euro 6 type regulations for China and India in the 2020 timeframe. China will be tightening 30-40% relative to Euro 6 in 2023. The California heavy duty (HD) low-NOx regulation is advancing and the US EPA is anticipating developing a harmonized proposal for implementation in 2023+. The US also finalized the next round of HD GHG (greenhouse gas) regulations for 2021-27, requiring 5% engine CO2 reductions. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations.
Technical Paper

Real World Study of Diesel Particulate Filter Ash Accumulation in Heavy-Duty Diesel Trucks

2006-10-16
2006-01-3257
In April 2003, a small field study was initiated to evaluate the effect of lube oil formulations on ash accumulation in heavy-duty diesel DPFs. Nine (9) Fuel Delivery Trucks were retrofitted with passive diesel particulate filters and fueled with ultra low sulfur diesel which contains less than 15 ppm sulfur. Each vehicle operated in the field for 18 months or approximately 160,000 miles (241,401 km) using one of three lube oil formulations. Ash accumulation was determined for each vehicle and compared between the three differing lube oil formulations. Ash analyses, used lube oil analysis and filter substrate evaluations were performed to provide a complete picture of DPF operations. The evaluation also examined some of the key parameters that allows for the successful implementation of the passive DPF in this heavy-duty application.
Technical Paper

Next Generation Aluminum Titanate Filter for Light Duty Diesel Applications

2011-04-12
2011-01-0816
With the introduction of the current EU5 standards the diesel particulate filter has become a key element in the aftertreatment of diesel passenger cars. The upcoming future emission standards target primarily a further reduction in NOx emission as well as reduced fleet average CO₂ emissions. Although the particulate filter has no direct influence on the reduction of these species, the needs of future aftertreatment systems impose additional requirements on advanced filter technologies. In this paper we are introducing two new filter products based on a new low porosity aluminum titanate family that complement the current DuraTrap® AT filter products. The new products offer the potential for an increased soot mass limit or a significant reduction in pressure drop. The enhanced performance of the new filter products is discussed and demonstrated in a large number of experimental data obtained in engine bench tests.
Technical Paper

Advances of Durability of Ceramic Converter Systems

1996-10-01
962372
Governing bodies world-wide are setting increasingly tighter emission standards to help improve air quality. US and Californian LEV/ULEV standards are pace setting, European Stage II legislation has just become effective. In Brazil, the upcoming 1997 standards are also demanding for tighter emission control. The monolithic ceramic honeycomb catalytic converter -for more than the past 20 years- has been a reliable key element in the automotive emission control systems. In order to help meet tightened emission regulation as well to satisfy even more stringent durability requirement, an advanced thinwall ceramic Celcor XT has been developed for increased geometric surface area and reduced backpressure. The product properties as well as FTP and ECE emission and durability test results are being described in this paper. Converter system durability is also determined by robust canning and mounting systems. A durable mounting concept, especially for preconverters, is being described.
Journal Article

Next Generation Gasoline Particulate Filters for Uncatalyzed Applications and Lowest Particulate Emissions

2021-04-06
2021-01-0584
With the introduction of EU6d and CN6 all vehicles with gasoline direct injection and many with port fuel injection engine will be equipped with a gasoline particulate filter (GPF). A range of first generation filter technologies has been introduced successfully, helping to significantly reduce the tailpipe particulate number emissions. The continued focus on particulate emissions and the increasing understanding of their impact on human health, combined with the advanced emission regulations under RDE conditions results in the desire for filters with even higher filtration efficiency, especially in the totally fresh state. At the same time, to balance with the requirements on power and CO2, limitations exist with respect to the tolerable pressure drop of filters. In this paper we will report on a new generation of gasoline particulate filters for uncatalyzed applications.
Technical Paper

Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0911
As demand for wall-flow Diesel Particulate Filters (DPF) increases, accurate predictions of DPF behavior, and in particular their pressure drop, under a wide range of operating conditions bears significant engineering applications. In this work, validation of a model and development of a simulator for predicting the pressure drop of clean and particulate-loaded DPFs are presented. The model, based on a previously developed theory, has been validated extensively in this work. The validation range includes utilizing a large matrix of wall-flow filters varying in their size, cell density and wall thickness, each positioned downstream of light or heavy duty Diesel engines; it also covers a wide range of engine operating conditions such as engine load, flow rate, flow temperature and filter soot loading conditions. The validated model was then incorporated into a DPF pressure drop simulator.
Technical Paper

Catalytic Converter Mat Material Durability Measurement Under Controlled Thermal and Vibration Environments

2000-03-06
2000-01-0221
To aid in the catalytic converter design and development process, a test apparatus was designed and built which will allow comparative evaluation of the durability of candidate mat materials under highly controlled thermal and vibration environments. The apparatus directly controls relative shear deflection between the substrate and can to impose known levels of mat material strain while recording the transmitted shear force across the mat material. Substrate and can temperatures are controlled at constant levels using a resistive thermal exposure (RTE) technique. Mat material fatigue after several million cycles is evident by a substantial decrease in the transmitted force. A fragility test was found to be an excellent method to quickly compare candidate materials to be used for a specific application. Examples of test results from several materials are given to show the utility of the mat material evaluation technique.
Technical Paper

Mechanical Durability of Cordierite–Based NOx Adsorber/Catalyst Systems for Lean Burn Gasoline Applications

1999-10-25
1999-01-3500
One approach to the remediation of NOx generated under lean automotive engine conditions is its controlled storage and then periodic release and reaction under enriched conditions. This process is being considered for automotive exhaust systems that will be operated pre–dominantly lean for reasons of fuel economy. Because of the special characteristics of alkali and alkaline earth elements in the presence of NOx, they are being considered for use, in conjunction with γ–alumina–based washcoats and precious metal catalysts, as NOx catalyst coatings on cellular supports. It is known that alumino–silicates will react with alkali and alkaline earth elements to form stable ceramic phases when mixtures of the components are held in direct contact at elevated temperatures.
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

2018-04-03
2018-01-1258
Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
Technical Paper

Evolution of Tailpipe Particulate Emissions from a GTDI Mild-Hybrid SUV with a Gasoline Particulate Filter

2021-04-06
2021-01-0582
The ceramic wall-flow filter has now been globally commercialized for aftertreatment systems in light-duty gasoline engine powered vehicles. This technology, known as the gasoline particulate filter (GPF), represents a durable solution for particulate emissions control. The goal of this study was to track the evolution of tailpipe particulate and gaseous emissions of a 4-cylinder gasoline turbocharged direct injected (GTDI) 2018 North American (NA) mild-hybrid light-duty SUV, from a fresh state to the 4,000-mile, EPA certification mileage level. For this purpose, a production TWC + GPF aftertreatment system designed for a China 6b-compliant variant of this test vehicle was retrofitted in place of the North American Tier 3 Bin 85 TWC-only system. Chassis dyno emissions testing was performed at predetermined mileage points with real-world, on-road driving conducted for the necessary mileage accumulation.
Technical Paper

Review of Vehicle Engine Efficiency and Emissions

2021-04-06
2021-01-0575
For more than two decades [1,2], Corning has served the community with an annual review of global regulatory and technological advances pertaining to emissions from internal combustion engine (ICE) driven vehicles and machinery. We continue with a review for the year 2020, which will be remembered by COVID and the significant negative impact it had on the industry. However, it also provided a glimpse of the possible improvement in air quality with reduced anthropogenic emissions. It was a year marked by goals set for climate change mitigation via reduced fossil fuel use by the transportation sector. Governments stepped up plans to accelerate the adoption of zero tailpipe emitting vehicles. However, any transformation of the transportation sector is not going to happen overnight due to the scale of the infrastructure and technology challenges. A case in point is China, which announced a technology roadmap which envisions half of the vehicles to be hybrids in 2035.
Technical Paper

High Porosity Substrates for Fast-Light-Off Applications

2015-04-14
2015-01-1009
Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.
Journal Article

Diesel Emissions in Review

2011-04-12
2011-01-0304
This review summarizes the latest developments in diesel emissions regarding regulations, engines, NOx (nitrogen oxides) control, particulate matter (PM) reductions, and hydrocarbon (HC) and CO oxidation. Regulations are advancing with proposals for 70% tightening of fleet average light-duty (LD) criteria emissions likely to be proposed in California for ~2016-22. CO₂ regulations in both the heavy- and light-duty sectors will also tighten and impact diesel engines and emissions, probably long into the future. Engine technology is addressing these needs. Light-duty diesel engines are making incremental gains with combustion enhancements that allow downsizing for CO₂ savings. Heavy-duty (HD) engine show trade-offs between hardware recipes, exhaust deNOx control, and fuel consumption.
Journal Article

Vehicular Emissions in Review

2014-04-01
2014-01-1491
The review paper summarizes major developments in vehicular emissions regulations and technologies in 2013. First, the paper covers the key regulatory developments in the field, including proposed light-duty (LD) criteria pollutant tightening in the US; and in Europe, the continuing developments towards real-world driving emissions (RDE) standards. Significant shifts are occurring in China and India in addressing their severe air quality problems. The paper then gives a brief, high-level overview of key developments in fuels. Projections are that we are in the early stages of oil supply stability, which could stabilize fuel prices. LD and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are or will soon be demonstrating 50% brake thermal efficiency using common approaches.
Journal Article

Review of Vehicle Engine Efficiency and Emissions

2019-04-02
2019-01-0314
This review paper covers major regulatory and technology developments in 2018 pertinent to tailpipe emissions of greenhouse gases and criteria pollutants. Europe has proposed ambitious reductions in CO2 limits for both light- and heavy-duty sectors. The challenge is compounded with changing measurement norms and a significant shift away from fuel efficient diesels in the light-duty (LD) space. Both incremental and step changes are being made to advance internal combustion. New studies show that in-use NOx emissions from diesels can be much lower than required by the Euro 6 regulation. Discussions have already started on Euro 7 regulations, and the leading regulatory concepts and proposed technical solutions are provided. In the heavy-duty (HD) sector, the progress is outlined in improving engine and vehicle fuel efficiency through the US Department of Energy’s (DOE’s) SuperTruck II program and other representative studies.
Journal Article

Anhydrous Gypsum as Diesel Ash Surrogate and Sensitivity to Ash Particle Size in Accelerated Ash Loading Studies

2021-04-06
2021-01-0585
Accelerated ash loading studies provide a cost-effective means of investigating the long-term impacts of ash accumulation in diesel particulate filters (DPFs). Despite a variety of methods adopted in previous studies for accelerated ash loading, evaluation of their impact on DPF behavior has been limited primarily to pressure drop response (with & without soot), and characterization of properties of the resulting ash deposits for comparison with samples from field testing. In the current study, the potential to use ash recovered from field DPFs to perform accelerated ash loading studies is explored. Additionally, anhydrous gypsum as a surrogate for diesel ash was investigated. Benefits of using gypsum include low cost and easy access, safety during handling and testing, and consistency from test to test. Narrow control of particle sizing and composition can help compare performance over a wide range of filter sizes and applications.
Technical Paper

A New High Temperature Ceramic Material for Diesel Particulate Filter Applications

2000-10-16
2000-01-2844
Cordierite-based diesel particulate filters (DPFs) have been in use for heavy duty engine applications for nearly two decades. Recently, passenger car applications for DPFs have begun to appear in Europe due to tightening legislation. While cordierite-based DPFs work well in most applications, it appears that in the passenger car exhaust environment under some uncontrolled regeneration conditions, cracking and melting of the existing cordierite-based DPF products have been reported. The present paper focuses on the development of new, high temperature oxide ceramics for DPF passenger car applications. When designed properly, DPFs made from these new materials do not show cracking or melting under uncontrolled regeneration. The material properties (strength, elastic modulus, coefficient of thermal expansion, etc.) and the filter performance properties (pressure drop, regeneration durability, etc.) have been characterized for DPFs made from these new materials.
Technical Paper

Diesel Particulate Filter Regeneration: Thermal Management Through Filter Design

2000-10-16
2000-01-2847
Honeycomb based diesel particulate filters have proven to be extremely effective in the removal of diesel soot. Under certain conditions, involving heavy soot loads and a shift of the engine into the idle mode during the early stages of the regeneration process, the current designs of cordierite filters have shown some tendency toward partial melting. A brief review of the SAE literature is presented, indicating that the temperatures reached during regeneration decrease substantially as the bulk heat capacity of the filter increases. Analysis of these literature data indicates that the top temperatures experienced during regeneration can be decreased by hundreds of degrees, by relatively modest increases in the bulk heat capacity of the bodies. New data are presented confirming how the top temperature varies with different filter designs in which the bulk heat capacity varies.
Technical Paper

Diesel Emission Control - Last 12 Months in Review

2000-10-16
2000-01-2817
The key diesel emission control papers of the last 12 months have been summarized. In addition, the emerging US and European light-duty and heavy-duty tailpipe regulations are compared. Results are reported on light-duty diesel filtration regeneration systems and experiences, including effects of ash build-up and some recent modeling work. On the heavy-duty side, optimization of SCR catalysts and systems are described, as well as experiences with the first integrated SCR/filter systems, which are already achieving “Euro V” 2008 standards. An update on NOx adsorbers is also provided. The results with new NOx formulations are described, as well as the system performance in a light-duty diesel application.
X